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Abstract. We show lower bounds in the cell probe model for the redun-
dancy/query time tradeoff of solutions to static data structure problems.

1 Introduction

In the cell probe model (e.g., [1, 3, 4, 6, 7, 9, 18–21]), a boolean static data struc-
ture problem is given by a map f : {0, 1}n×{0, 1}m → {0, 1}, where {0, 1}n is a
set of possible data to be stored, {0, 1}m is a set of possible queries and f(x, y)
is the answer to question y about data x. For natural problems, we have m � n:
the question we pose to the database is much shorter than the database itself.
Examples of natural data structuring problems include:

Substring Search: Given a string x in {0, 1}n we want to store it in a data
structure so that given a query string y of length m, we can tell whether y is a
substring of x by inspecting the data structure. This problem is modeled by the
function f defined by f(x, y) = 1 iff y is a substring of x.

Prefix Sum: Given a bit vector x ∈ {0, 1}n, store it in a data structure so that

queries “What is (
∑k

i=1 xi) mod 2?” can be answered. This problem is modeled
by the function f defined by f(x, y) = (

∑vy

i=1 xi) mod 2 where y is the binary
representation of the integer vy.

For Substring Search, both the data to be stored and the query are bit strings,
as our framework requires. The only reason for this requirement is that to make
our discussion about current lower bound techniques and their limitations clear,
we want the parameter n to always refer to the number of bits of the data to be
stored, the parameter m to always refer to the number of bits of a query and the
output of the query to be a single bit. In general, we don’t necessarily expect the
data we want to store to be bit strings, but an arbitrary encoding as bit strings
may take care of this, as in the following example.

Membership: Given a set S of k binary strings each of length m, store S as
a data structure so that given a query y ∈ {0, 1}m, we can tell whether y ∈ S.
To make this problem fit into the framework above, the function f would be
defined by letting n = dlog2

(

2m

k

)

e and fixing, in some arbitrary way, a compact
encoding of k-sets as n-bit strings and letting f(S, y) = 1 iff y ∈ S.

The framework captures not only the classical “storage and retrieval” static
data structure problems but also more general problems of dealing with pre-
processed information, such as the classical algebraic problem of polynomial
evaluation with preprocessing of coefficients ([15, pp. 470-479], see also [19]):
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Polynomial Evaluation: Store g ∈ F[x], |F| = 2k, g of degree ≤ d as a memory
image so that queries “What is g(x)?” can be answered for any x ∈ F. This
problem is non-boolean, but can be modeled as a boolean problem by letting
n = (d+1)k, m = k+log k, fixing an arbitrary compact encoding of polynomials
and field elements as bit strings and letting f(g, x · y) = vy ’th bit of g(x), where
y is the binary notation of vy and · denotes concatenation.

In the cell probe model with word size 1 (the bit probe model), a solution
with space bound s and time bound t to a problem f is given by a storage scheme
φ : {0, 1}n → {0, 1}s, and a query algorithm q so that q(φ(x), y) = f(x, y). The
time t of the query algorithm is its bit probe complexity, i.e., the worst case
number of bits it reads in φ(x).

Every problem possesses two trivial solutions: The solution of explicitly stor-
ing the answer to every query (this solution has space s = 2m and time t = 1)
and the solution of storing the data verbatim and reading the entire data when
answering queries (this solution has space s = n and time t = n, as we only
charge for reading bits in φ(x), not for computation). The study of cell probe
complexity concerns itself with the tradeoff between s and t that may be ob-
tained by solutions somewhere between the two extremes defined by the trivial
solutions. Such solutions may be quite non-trivial and depend strongly on the
problem considered. A polynomial solution satisfies s = nO(1) and t = mO(1). For
instance, perfect hashing schemes form solutions to Membership with s = O(n)
and t = O(m) [11] and even s = n+ o(n) and t = O(m) [5, 25]. Substring Search
also admits an s = O(n), t = O(m) solution [12] and very recently a solution
with s = n + o(n) and t = mO(1) was constructed [13] but no solution with
s = n + o(n) and t = O(m) is known. For a problem such as Polynomial Eval-
uation (and many natural data structure problems, such as partial match type
problems [3, 4, 7]), we know of no solution with s = nO(1), t = mO(1). Thus, a
main concern is to prove that such solutions do not exist.

For s = O(n), lower bounds of the form t = Ω(m) may be obtained for
explicit and natural problems by simple counting arguments [6]. For s = nO(1),
we can do almost as good: Lower bounds of the form t = Ω(m/ log n) can be
obtained using communication complexity [20]. But no very good (i.e., ω(m))
lower bounds are known on t for any explicit problem f for the case of s = O(n) or
s = nO(1) even though counting arguments prove the existence of (non-explicit)
problems f with lower bounds of the form t = Ω(n), even for m ≈ (log n)2

[18]. Thus, it is consistent with our current knowledge that solutions with s =
O(n) and t = O(m) exist for all explicit (e.g., all exponential time computable)
problems, though it is certainly a generally believed conjecture that this is not
the case!

Given our lack of tools strong enough to show statements such as s = O(n) ⇒
t = ω(m) for explicit problems, it seems appropriate to lower our ambitions
slightly and try to show such lower bounds for t for any non-trivial value of s.
Achieving such goals is well in line with the current trend in the theoretical as
well as practical studies of data structures (e.g., [17, 5, 25, 13]) of focusing on
succinct data structures where s = n + r for some redundancy r � n, i.e., on
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structures whose space requirement is close to the information theoretic mini-
mum. Restricting our attention to such succinct structures by no means trivial-
izes obtaining the lower bounds we want to show. For instance, it is open (and
remains open, also after this work) whether a solution with r = 0 and t = O(m)
exists for the Membership problem. However, in this paper we show that for
certain explicit (polynomial computable) problems it is possible to show lower
bounds of the form t = ω(m) and even t = Ω(n) for structures with a sufficiently
strong upper bound on r:

Theorem 1. Let k, d be integers larger than 0 so that d < 2k/3. Let F = GF(2k)
and let n = (d + 1)k. Let a storage scheme φ : {f |f ∈ F[x], degree(f) ≤ d} →
{0, 1}n+r and associated query scheme for “What is f(x)?”, x ∈ F with bit probe
complexity t be given. Then, (r + 1)t ≥ n/3.

In particular, for very small redundancies, we get an almost optimal lower bound
stating that the query algorithm has to inspect almost the entire data structure.
The theorem is for the (more natural) non-boolean version of the polynomial
evaluation problem. A lower bound of (r + 1)t ≥ n/3k for the boolean version
of polynomial evaluation we defined previously immediately follows.

The proof of Theorem 1 (presented in Section 2) is based on the fact that
the problem of polynomial evaluation hides an error correcting code: The strings
of query answers for each possible data (i.e., each polynomial) form the Reed-
Solomon code. We can generalize Theorem 1 to any problem hiding an error
correcting code in a similar way (see Theorems 4 and 5 in Section 2). However,
not many natural data structuring problems contain an error correcting code in
this way. In Section 2, we introduce a parameter of data structuring problems
called balance and, using the sunflower lemma of Erdős and Rado show that
for problems having constant balance, we get a lower bound of the form t(r +
1)2 ≥ Ω(n) (Theorem 6). A problem hiding a good error correcting code in the
way described above has constant balance, but the converse statement is not
necessarily true. Hence Theorem 6 has the potential to prove lower bounds on
a wider range of problems than Theorems 4 and 5, though we do not have any
natural data structuring problems as examples of this at the moment.

The results above are based on combinatorial properties of a coding theoretic
flavor of the problems f to be solved. We don’t know how to prove similar lower
bounds for natural storage and retrieval problems such as Substring Search.
However, we get a natural restriction of the cell probe model by looking at the
case of systematic or index structures. These are storage schemes φ satisfying
φ(x) = x · φ∗(x) for some map φ∗, i.e, we require that the original data is kept
“verbatim” in the data structure. We refer to φ∗(x) as the index part of φ(x).
The restriction only makes sense if there is a canonical way to interpret the data
to be stored as a bit-string. It is practically motivated: The data to be encoded
may be in read-only memory or belong to someone else or it may be necessary
to keep it around for reasons unrelated to answering the queries defined by f .
For more discussion, see, e.g. Manber and Wu [17]. In the systematic model,
we prove a tight lower bound for Prefix Sum (in fact, we show that the lower
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bound is implicit in work of Nisan, Rudich and Saks [24]) and a lower bound for
Substring Search.

Theorem 2. Θ(n/(r +1)) bit probes are necessary and sufficient for answering
queries in a systematic structure for Prefix Sum with r bit redundancy.

Theorem 3. Consider Substring Search with parameters n, m so that 2 log2 n+
5 ≤ m ≤ 5 log2 n. For any systematic scheme solving it with redundancy r and
bit probe complexity t, we have (r + 1)t ≥ 1

800n/ log n.

Both proofs are presented in Section 3. We are aware of one paper previous
to this one where lower bounds of the form t = ω(m) were established for
succinct, systematic data structures: Demaine and Lopez-Ortiz [8] show such a
lower bound for a variation of the Substring Search problem. In their variation,
a query does not just return a boolean value but an index of an occurrence of
the substring if it does indeed occur in the string. For this variation, they prove
the following lower bound for a value of m which is Θ(log n) as in our bound:
t = o(m2/ log m) ⇒ (r + 1)t = Ω(n log n). Thus, they give a lower bound on
the query time even with linear redundancy which our method cannot. On the
other hand, their method cannot give lower bounds on the query time better
than Ω(m2/ log m) even for very small redundancies which our method can.
Furthermore, our lower bound applies to the boolean version of the problem.

2 Lower bounds for non-systematic structures

Proof of Theorem 1. Let a storage scheme φ with redundancy r and an associated
query scheme with bit probe complexity t be given. Let s = n+r. Assume to the
contrary that the scheme satisfies (r + 1)t < n/3. As r ≥ 0 in any valid scheme,
we have t < n/3. We make a randomized construction of another storage scheme
φ′ by randomly removing r + 1 bits of the data structures of storage scheme φ.
That is, we pick S ⊂ {1, .., n+r} of size r+1 at random and let φ′(x) = φ(x) with
bits in positions i ∈ S removed. Thus, φ′(x) ∈ {0, 1}n−1. We make an associated
query scheme for φ′ by simulating the query scheme for φ, but whenever a bit
has to be read that is no longer there, we immediately answer “Don’t know”.
Clearly, if we use our new storage scheme φ′ and the associated query scheme,
we will on every query, either get the right answer or the answer “Don’t know”.
Now fix a polynomial f and a query x and let us look at the probability that the
randomized construction gives us the answer “Don’t know” on this particular
data/query-pair. The probability is equal to the probability that the random set
S intersects the fixed set T of bits that are inspected on query x in structure φ(f)
according to the old scheme. As |S| = r + 1 and |T | ≤ t, the probability of no

intersection can be bounded as Pr[S ∩ T = ∅] ≥ ( s−t
s ) ( s−1−t

s−1 ) . . . ( s−(r+1)+1−t
s−(r+1)+1 )

≥ (1 − t
n )r+1 ≥ 1 − (r+1)t

n > 2/3. This means that if we fix f and count the
number of answers that are not “Don’t know” among all answers to “What is
f(x)?”, x ∈ F, the expected number of such valid answers is > 2|F|/3, and the
expected number of “Don’t know” answers is < |F|/3. Thus, for fixed f , the
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probability that the number of valid answers for this f is < |F|/3 is < 1/2.
Define f to be “good” for a particular choice of S if the number of valid answers
for f is at least |F|/3. Thus, for random S, the probability that a particular
fixed f is good is > 1/2, by the above calculation, so if we count among all 2n

possible f ’s the number of good f ’s, the expectation of this number is > 2n/2.
Thus, we can fix a value of S so that the number of good f ’s is > 2n/2. Let
the set of good f ’s relative to this choice of S be called G. We now argue that
the map φ′ : G → {0, 1}n−1 is a 1-1 map: Given the value φ′(f) for a particular
f ∈ G, we can run the query algorithm for f(x) for all x ∈ F and retrieve a
valid answer in at least |F|/3 cases - in the other cases we get the answer “Don’t
know”. Since the degree of f is less than |F|/3, the information we retrieve is
sufficient to reconstruct f . Thus, we have constructed a 1-1 map from G with
|G| > 2n/2 to the set {0, 1}n−1 which has size 2n/2. This violates the pigeonhole
principle, and we conclude that our assumption (r+1)t < n/3 was in fact wrong.
This completes the proof of Theorem 1.

Theorem 1 can be generalized to any problem based on some error correcting
code. Consider an arbitrary boolean static data structure problem, given by a
map f : {0, 1}n×{0, 1}m → {0, 1}. Let N = 2n, and M = 2m. Then the problem
can be represented by an N ×M Boolean matrix Af , with the entry at the row
indexed by x and the column indexed by y being equal to f(x, y).

Theorem 4. Let Af be the N by M (N = 2n) matrix of a data structure
problem such that the rows of Af have pairwise distance at least δM . If the
problem can be solved with redundancy r and query time t, then t(r +1) ≥ δn/2.

The argument can also be extended to problems where the minimum distance
may not be large, but instead we require that within any ball of radius ρM there
are at most L codewords (i.e., codes with certain list decoding properties). In
fact, the even weaker property of having only few codewords in every subcube of
dimension ρM is sufficient for our purposes. (Note that this property corresponds
to the problem of list decoding from erasures, rather than from errors.)

Let αi1 , . . . , αiM−d
be an arbitrary 0/1 assignment to M − d coordinates.

The set S ⊆ {0, 1}M of size |S| = 2d formed by all possible vectors from {0, 1}M

agreeing with αi1 , . . . , αiM−d
and arbitrary in the remaining coordinates is called

a subcube of dimension d.

Theorem 5. Let Af be the N by M (N = 2n) matrix of a data structure
problem such that within any subcube of dimension ρM there are at most L row
vectors from Af . If the problem can be solved with redundancy r and query time
t, then t(r + 1 + log L) ≥ ρ(n − log L)/2.

The proofs of Theorems 4 and 5 are very similar to the proof of Theorem 1 and
appear in the full version of this paper.

We next give a general lower bound for any problem whose matrix satisfies
certain conditions. Informally, we require that the submatrix formed by any
small subset of rows contains a balanced column.
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Definition 1. Let A be a matrix with 0/1 entries. We say that A has balance at
least λ for parameter k, if for any k rows of the matrix A there exists a column
that contains at least λk 0-s and at least λk 1-s among the entries of the given
k rows.

Lemma 1. Given a code with N words in {0, 1}l, let A be the N by l matrix
formed by the words as rows. If the minimum distance of the code is δl, then A
has balance at least δ/8 for every 1 < k ≤ N .

Proof. Look at the k by l table formed by k rows of A. Let γ = δ/8. Suppose that
each column in the table has either < γk 0-s or < γk 1-s. Let a be the number of
mostly 1 columns and b be the number of mostly 0 columns. Then < k/2 rows
have > 2γa 0-s on the mostly 1 part. Restrict the table to the other k′ > k/2
rows. In this table, the b mostly 0 columns still have < 2γk′ 1-s. So, < k′/2 rows
have > 4γb 1-s on the mostly 0 part. Thus, > k/4 rows have both < 2γa 0-s on
the mostly 1 part and < 4γb 1’s on the mostly 0 part, respectively. The distance
of any two of these rows is < 4γa + 8γb < δl, which is a contradiction.

The proof of Lemma 1 also extends to codes where the minimum distance may
not be large, but instead we require that within any ball of certain radius there
are not too many words, i.e., to problems satisfying the condition of Theorem
5. We can, however, construct codes that satisfy the property of having large
balance for every k, without the property of having few codewords in every
Hamming ball of a given radius, and even without the weaker property of having
few codewords in every subcube of a given dimension. Consider the following
example of such construction. Let ρ be any constant, and L any integer, such
that ρ + 1

L < 1/20. We will construct a set of words in {0, 1}M with at least L
words in some subcube of dimension ρM , such that for any set of rows of the
corresponding matrix there is a column with balance > ρ + 1

L . Start with any
family that has balance at least 5(ρ+ 1

L). (We know the existence of such families,
from the existence of good error correcting codes.) Add L words to this family
as follows. Take a code of L words on c log L coordinates for some constant c,
with relative minimum distance 1/4. (Such code exists for some constant c.) Let
the first c log L coordinates of the extra L words to be words from this code of
size L, and let the L words be identical in the remaining M−c logL coordinates.
Unless L is huge (compared to M), we have c log L < ρM , thus we have L words
in a subcube of dimension ρM . It is not hard to see that the corresponding
matrix has balance at least ρ+ 1

L for any k. Thus, the following theorem has the
potential of giving lower bounds for a wider range of problems than the theorems
of Section 2. Consider an arbitrary boolean static data structure problem, given
by a map f : {0, 1}n × {0, 1}m → {0, 1}.

Theorem 6. Let Af be the N by M (N = 2n, M = 2m) matrix of f . If Af has
balance at least λ for every 1 < k ≤ log N . and the problem defined by f can be
solved with redundancy r and query time t, then t(r + 1)2 ≥ λn.

Proof. A solution to the data structure problem is given by a representation
φ : {0, 1}n → {0, 1}s and a query algorithm. We consider a matrix B of size
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N × s, such that the row of B indexed by x is the vector φ(x). We use the
following standard observation.

Observation 1. Given a set C of N = 2s−r vectors in {0, 1}s, for every 0 ≤
w ≤ s there is a vector v ∈ {0, 1}s, such that there are at least

(

s
w

)

/2r vectors in
C at distance w from v.

Proof. Let χ(u, v) = 1 if u and v differ in w coordinates, and χ(u, v) = 0
otherwise. We have

∑

u∈C

∑

v∈{0,1}s χ(u, v) = |C|
(

s
w

)

. On the other hand,
∑

v∈{0,1}s

∑

u∈C χ(u, v) ≤ 2s maxv∈{0,1}s |Cv,w| , where Cv,w = {z ∈ C| z and

v differ in w coordinates }. This completes the proof of Observation 1.

Let w = r + 1 (note that r + 1 ≥ 1), and let v ∈ {0, 1}s, guaranteed to exist
by the observation, such that there are at least

(

s
r+1

)

/2r rows of B at distance
r+1 from v. Let Bv be the matrix obtained from B by adding v to each row of B
(taking bitwise XOR). With each vector u ∈ {0, 1}s we associate a set U ⊆ [s],
such that i ∈ [s] belongs to U if and only if the i-th entry of u is 1. Then the
matrix Bv specifies a family B of N sets, such that at least

(

s
r+1

)

/2r members
of B have cardinality r + 1.

A family of k sets S1, . . . , Sk is called a sunflower with k petals and core T ,
if Si ∩ Sj = T for all i 6= j. We also require that the sets Si \ T are nonempty.

Lemma 2 (Erdős and Rado, [10]). Let F be a family of sets each with car-
dinality w. If |F| > w!(k − 1)w, then F contains a sunflower with k petals.

Since
(

s
r+1

)

/2r > (r + 1)!(s/(r + 1)2)r+1, Lemma 2 implies that B contains a

sunflower with k = s/(r +1)2 petals. Let S1, . . . , Sk be the sets of the sunflower,
and let T be its core. Then, the sets Si4T are pairwise disjoint. (Si4T denotes
the symmetric difference of the sets Si and T .) Let z and u1, . . . , uk be the
vectors obtained by adding the vector v to the characteristic vectors of the
set T and S1, . . . , Sk, respectively. Then the vectors u1, . . . , uk are rows of the
matrix B, and they have the property that the vectors z ⊕ u1, . . . , z ⊕ uk have
no common 1’s, since the set Si4T is exactly the set of coordinates where the
vectors z and ui differ from each other. Let x1, . . . , xk be the data such that
ui = φ(xi), i = 1, . . . , k. Consider now the k rows of Af indexed by x1, . . . , xk.
By our assumption on Af , there is a question y, such that at least λk of the
answers f(xi, y) are 0, and at least λk of the answers f(xi, y) are 1. We think
of the query algorithm as a decision tree, and show that it has large depth. In
particular, we show that the path consistent with the vector z has to be at least
λk long. (Note that the vector z may not be a row of the matrix B. However, we
can assume that the decision tree has been trimmed, so that there are no long
paths that can be cut off without affecting the correctness of the algorithm. This
implies that there is at least one path corresponding to a vector φ(x) that the
algorithm may actually have to follow, and is at least λk long.) Assume that the
query algorithm reads at most t < λk bits on any input when trying to answer
the question y, and assume that the bits read are consistent with the vector z.
Since the sets of coordinates where z differs from ui for i = 1, . . . , k are pairwise
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disjoint, after asking at most t questions, the algorithm can rule out at most t
of the data x1, . . . , xk, and the remaining k − t are still possible. If t < λk, then
among the data that are still not ruled out, both the answer 0 and the answer 1
is possible, and the algorithm cannot determine the answer to the given question
y. This completes the proof of Theorem 6.

It is not hard to find examples of matrices with large balance for k ≤ log N ,
if we are not worried about the number of rows N being large enough compared
to the number of columns M . We should mention that there are well known
constructions (e.g. [2, 14, 22, 23, 26]) for the much stronger property requiring
that all possible 2k patterns appear in the submatrix formed by arbitrary k
rows. However, in such examples, N ≤ M or 2k ≤ M must trivially hold.
Error correcting codes provide examples where N can be very large compared
to M . Let n(k, λ, M) denote the largest possible number n, such that 2n by M
0/1 matrices exist with balance at least λ for k. Lower bounds on the largest
achievable rate of error-correcting codes or list decodable codes provide lower
bounds on n(k, λ, M). For example, the Gilbert-Varshamov bound (see e.g. [16])
together with Lemma 1 implies n(k, λ, M) ≥ (1 − H(8λ))M , for every k > 1.
Note that while error correcting codes give large balance for every k > 1, for our
purposes matrices that have large balance for only certain values of k may already
be useful. It would be interesting to know if n(k, λ, M) can be significantly
larger (for certain values of k) than what is achievable by error-correcting or list
decodable codes. If this is the case, then our techniques might help to achieve
lower bounds for the Membership problem.

3 Lower bounds for systematic structures

Proof of Theorem 2. Upper bound: For r = 0, the upper bound is obvious. For
r ≥ 1, divide the input vector into r equal sized blocks and let yi be the parity of
the i’th block. Now store for each j = 1, ..r, the parity of y1, y2, . . . , yj . Given a
prefix sum query, it can be answered by reading a non-systematic bit, that gives
the parity of a collection of blocks and XORing it with a number of individual
input bits, all found in a single block of size n/r. The bit probe complexity is
O(n/r).
Lower bound: Let a scheme of redundancy r be given and suppose the queries
can be answered with t bit probes, i.e., we can find x1 ⊕· · ·⊕xj using a decision
tree of depth t over the input bits and the index bits. Split the input into r + 1
blocks of about equal length, each block containing at least b n

r+1c bits. It is
possible to determine the parity of one of the blocks by a decision tree of depth
2t over the input bits and the index bits. We now apply a theorem of Nisan,
Rudich and Saks [24]: Given l +1 instances of computing parity of k bits, with l
help bits (which can be arbitrary functions of the (l + 1)k input bits), given for
free. At least one of the l + 1 parity functions has decision tree complexity ≥ k.
We immediately get the desired bound.

Proof of Theorem 3. Since we must have r ≥ 0 and t ≥ 1 in a valid scheme, we
can assume that 1 ≤ t ≤ n

800 log n otherwise there is nothing to prove. We need
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to prove a claim about a certain two-player game. Let b ≥ a ≥ 40 be integers
and assume b is even. The game is played with b boxes labeled 0, . . . , b − 1 and
a slips of papers, labeled 0, . . . , a − 1. Player I colors each slip of paper either
red or blue and puts each slip of paper in a box (with no two slips going into
one box) without Player II watching. Now Player II can open at most b/2 boxes
using any adaptive strategy and based on this must make a guess about the
color of every slip of paper. Player II wins the game if he correctly announces
the color of every slip of paper. Suppose Player I adopts the strategy of col-
oring each slip of paper uniformly and independently at random and putting
them at random into a boxes chosen uniformly at random. We claim that no
matter which strategy Player II adopts, the probability that Player II wins the
game is at most 2−a/20. To prove the claim, note that when Player I is play-
ing uniformly at random in the way described, by symmetry the adaptiveness
of Player II is useless and the optimal strategy for Player II is to open boxes
1, 2, ..., b/2, announce the colors of the slips of papers found and make an ar-
bitrary guess for the rest. The probability that he finds more than 9

10a slips of

papers is
∑a

j> 9

10
a

(b/2

j )( b/2

a−j)
(b

a)
=

∑b 1

10
ac

i=0
(b/2

i )(b/2

a−i)
(b

a)
. Since a ≤ b, for i ≤ 1

10a we

have b
2(b−i) ≤ 5/9. Then,

(b/2

i )( b/2

a−i)
(b

a)
≤

(

a
i

)

(1/2)i( b
2(b−i) )

a−i ≤
(

a
i

)

(5/9)a and

∑b 1

10
ac

i=0
(b/2

i )(b/2

a−i)
(b

a)
≤ (5/9)a

∑b 1

10
ac

i=0

(

a
i

)

≤ (5/9)a2H(1/10)a ≤ 2(H(1/10)−log
2
(3/2))a

≤ 2−0.115a. The probability that he guesses the colors of all remaining slips
correct, given that at least a/10 was not found is at most 2−a/10. Thus, the
probability that Player II correctly guesses the color of every slip of paper is
bounded by 2−0.115a + 2−a/10 ≤ 2−a/20, as a ≥ 40. This completes the proof of
the claim.

We show that a good scheme for Substring Search leads to a good strategy
for Player II in the game. So given a scheme with parameters n, m, r, t, we let
a = b n

4tmc and b = 4ta. Since t ≤ n/(800 logn) and m ≤ 5 log n, we have a ≥ 40.
We consider a string of length n as consisting of b concatenated chunks of length
m, padded with 0’s to make the total length n (note that bm = 4tam ≤ n).
We can now let such a string encode a move of Player I (i.e. a coloring of slips
of papers and a distribution of them into boxes) as follows: The content of
Box i is encoded in chunk number i. If the box is empty, we make the chunk
000000..000. If the box contains paper slip number j, colored blue, we make the
chunk 001j11j21j31...1jk0, padded with zeros to make the total length m, where
j1...jk is the binary representation of j with dlog ae binary digits (note that
3 + 2dlogae ≤ 2 logn + 5 ≤ m). Similarly, if the box contains paper slip number
j, colored red, we make the chunk 001j11j21j31...1jk1, padded with zeros. Now
consider the set X of strings encoding all legal moves of player I. Each element x
of X has some systematic data structure φ(x) = x ·φ∗(x) where φ∗(x) ∈ {0, 1}r.
Pick the most likely setting z of φ∗(x) of these among elements of X , i.e., if we
take a random element x of X , the probability that φ∗(x) = z is at least 2−r.
We now make a strategy for Player II in the game. Player II will pretend to have
access to a Substring Search data structure which he will hope encodes the move
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of Player I. The index part of this data structure will be the string z which is
fixed and independent of the move of Player I and hence can be hardwired into
the protocol of Player II. Player II shall simulate certain query operations on
the pretend data structure. However, he has only access to the index part of the
structure (i.e., z). Thus, whenever he needs to read a bit of the non-index bits,
he shall open the box corresponding to the chunk of the bit from which he can
deduce the bit (assuming that the entire data structure really does encode the
move of Player I). In this way, Player II simulates performing query operations
“Is 001j11j21j31...1jk0 a substring?” and “Is 001j11j21j31...1jk1 a substring?”
with j = j1j2 . . . jk being the binary representations of all y ∈ {0, . . . , a − 1},
i.e., 2a query operations. From the answers to the queries, he gets a coloring
of the slips of papers. All answers are correct for those cases where his index
part was the correct one, i.e., for those case where z = φ∗(x) where x is an
encoding of the move of Player I, i.e., with probability at least 2−r. Thus, since
the total number of boxes opened is at most t2a ≤ b/2, we have by the claim
that r ≥ a/20, i.e., 20r ≥ bn/4tmc, and, since r is an integer and m ≤ 5 logn
we have (r + 1)t ≥ 1

400n/ logn. This completes the proof of Theorem 3.

We could potentially get a better lower bound by considering a more complicated
game taking into account the fact that the different query operations do not
communicate. Again we have b boxes labeled 0, . . . , b − 1 and a slips of paper,
labeled 0, . . . , a − 1. The modified game is played between Player I and a team
consisting of Player II0, II1, . . ., IIa−1. Again, Player I colors each slip of paper
either red or blue and puts each slip of paper in a box without Players II0, II1,
. . ., IIa−1 watching. Now Player IIi can look in at most b/2 boxes using any
adaptive strategy and based on this must make a guess about the color of the
slip labeled i. This is done by each player on the team individually without
communication or observation between them. The team wins if every player in
the team correctly announces the color of “his” slip. About this game we can
state the following hypothesis.

Hypothesis Let b ≥ 2a. Suppose Player I adopts the strategy of coloring each
slip of paper uniformly at random and independently putting them at random
into a boxes chosen uniformly at random. Then no matter which strategy the
team adopts, the probability that they win is at most 2−Ω(a).

The intuition for the validity of the hypothesis is the fact that the players
of the team are unable to communicate and each will find his own slip of paper
with probability ≤ 1

2 . If the hypothesis can be verified it will lead to a tradeoff
for Substring Search of the form t = o(n/ log n) ⇒ s = Ω(n/ log n). However,
Sven Skyum (personal communication) has pointed out that if the hypothesis
is true, the parameters under which it is true are somewhat fragile: If b = a,
the team can win the game with probability bounded from below by a constant
(roughly 0.3) for arbitrary large values of a. The catch is that even though each
player will find his own slip of paper with probability only 1

2 , one can make these
events highly dependent (despite the fact that the players do not communicate).
We leave finding Skyum’s protocol as an exercise to the reader.
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4 Open problems

It is interesting that all our best bounds, both in the non-systematic and in the
systematic case, are of the form “(r + 1)t must be linear or almost linear in n.”
We don’t see any inherent reason for this and in general do not expect the lower
bounds obtained to be tight. Thus, it would be nice to to prove a lower bound of,
say, the form, t < n/polylog n ⇒ r > n/polylog n for Polynomial Evaluation in
the non-systematic case or Substring Search in the systematic case. For the latter
result, it would be sufficient to verify the hypothesis about the game defined
above. It is also interesting to note that our lower bound for Substring Search
and the lower bound of Demaine and Lopez-Ortiz are incomparable. Can the
two techniques be combined to yield a better lower bound? We have only been
able to prove lower bounds in the non-systematic case for problems satisfying
certain coding theoretic properties. It would be very nice to extend the non-
systematic lower bounds to more natural search and retrieval problems, such as
Substring Search. A prime example of a problem for which we would like better
bounds is Membership as defined in the introduction. As the data to be stored
has no canonical representation as a bitstring, it only makes sense to consider
this problem in the non-systematic model. The lower bound r = O(n) ⇒ t =
Ω(m) was shown by Buhrman et al [6]. On the other hand, a variety of low-
redundancy dictionaries with r = o(n) and t = O(m) has been constructed [5,
25]. We conjecture that any solution for membership with t = O(m) must have
some redundancy, i.e., that t = O(m) ⇒ r ≥ 1. It would be very nice to establish
this. The main open problem of cell probe complexity remains: Show, for some
explicit problem, a tradeoff of the form r = O(n) ⇒ t = ω(m). Clearly, for
such tradeoffs the distinction between systematic and non-systematic structures
is inconsequential.
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